The Binet formula, sums and representations of generalized Fibonacci p-numbers
نویسنده
چکیده
In this paper, we consider the generalized Fibonacci p-numbers and then we give the generalized Binet formula, sums, combinatorial representations and generating function of the generalized Fibonacci p-numbers. Also, using matrix methods, we derive an explicit formula for the sums of the generalized Fibonacci p-numbers. c © 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
The generalized order-k Fibonacci–Pell sequence by matrix methods
In this paper, we consider the usual and generalized order-k Fibonacci and Pell recurrences, thenwe define a new recurrence, which we call generalized order-k F–P sequence. Also we present a systematic investigation of the generalized order-k F–P sequence. We give the generalized Binet formula, some identities and an explicit formula for sums of the generalized order-k F–P sequence by matrix me...
متن کاملA Simplified Binet Formula for k-Generalized Fibonacci Numbers
In this paper, we present a particularly nice Binet-style formula that can be used to produce the k-generalized Fibonacci numbers (that is, the Tribonaccis, Tetranaccis, etc.). Furthermore, we show that in fact one needs only take the integer closest to the first term of this Binet-style formula in order to generate the desired sequence.
متن کاملON THE GENERALIZED ORDER-k FIBONACCI AND LUCAS NUMBERS
In this paper we consider the generalized order-k Fibonacci and Lucas numbers. We give the generalized Binet formula, combinatorial representation and some relations involving the generalized order-k Fibonacci and Lucas numbers.
متن کاملTHE GENERALIZED BINET FORMULA, REPRESENTATION AND SUMS OF THE GENERALIZED ORDER-k PELL NUMBERS
In this paper we give a new generalization of the Pell numbers in matrix representation. Also we extend the matrix representation and we show that the sums of the generalized order-k Pell numbers could be derived directly using this representation. Further we present some identities, the generalized Binet formula and combinatorial representation of the generalized order-k Pell numbers.
متن کاملNew Sums Identities In Weighted Catalan Triangle With The Powers Of Generalized Fibonacci And Lucas Numbers
In this paper, we consider a generalized Catalan triangle de ned by km n 2n n k for positive integer m: Then we compute the weighted half binomial sums with the certain powers of generalized Fibonacci and Lucas numbers of the form n X k=0 2n n+ k km n X tk; where Xn either generalized Fibonacci or Lucas numbers, t and r are integers for 1 m 6: After we describe a general methodology to show how...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 29 شماره
صفحات -
تاریخ انتشار 2008